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Abstract

By virtue of the separation of variables technique, the axisymmetric plane strain electroelastic dynamic problem of
hollow cylinder is transferred to an integral equation about a function with respect to time, which can be solved
successfully by means of the interpolation method. Then the solution of the displacements, stresses, electric displace-
ments and electric potentials are finally obtained. The present method is suitable for the hollow cylinder with arbitrary
thickness subjected to arbitrary mechanical and electrical loads. Numerical results are also presented.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analyses for dynamic problems of elastic bodies are important and interesting research fields for
engineers and scientists. Being the common structural form, the hollow cylinders (cylindrical shells) are
studied extensively. For non-piezoelectric media, based on the momentless thin shell theory, Mcivor (1966)
discussed the flexural stresses and membrane stresses in an elastic cylindrical shell under an arbitrary im-
pulsive pressure distribution. Using the method of characteristics, the dynamic responses of cylindrical and
spherical shells were studied by Chou and Koenig (1966) and Rose et al. (1973). By means of the finite
Hankel transform and Laplace transform, Cinelli (1966) obtained the theoretical solutions of cylindrical
and spherical shells. Wang and Gong (1991) studied the stress responses of isotropic cylindrical shells
shocked at the inner surface. While for piezoelectric media, Adelman and Stavsky (1975) studied the ax-
isymmetric free vibrations of radially polarized piezoelectric ceramic hollow cylinders. The torsional wave
motion of a finite inhomogeneous piezoelectric cylindrical shell was solved by Sarma (1980), in which the
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material constants are assumed to vary as the 2Nth power of » and the boundary conditions were time
dependent, axisymmetric electric potentials. It’s noted that the solution is only fit for class 622 crystals but
not fit for class 6 mm crystals. Shul’ga et al. (1984) investigated the axisymmetric electroelastic waves in a
hollow piezoelectric ceramic cylinder. The free vibrations of piezoelectric, empty and also compressible
fluid filled cylindrical shells for three-dimensional problems were studied by Ding et al. (1997a,b). Com-
paring with non-piezoelectric media, it is more difficult to obtain the dynamic analytical solution because of
the special coupling effect between mechanical deformation and electrical field. At present, the most works
are located to study the fields of free vibrations and wave propagations. While the transient responses,
although they are very important, have not been studied to the author’s knowledge.

In this paper, a method is developed for solving the transient response of axisymmetric plane strain
problem of piezoelectric hollow cylinders subjected to dynamic loads. Firstly, a special function is intro-
duced to transform the inhomogeneous mechanical boundary conditions into the homogeneous ones.
Secondly, by virtue of the orthogonal expansion technique and by using the initial conditions as well as
electrical boundary conditions, the integral equation about a function with respect to time is then derived,
which is possible to be solved by means of interpolation method. And finally, the displacement, stresses,
electric displacement and electric potential are obtained. The present method is suitable for the hollow
cylinder with arbitrary thickness subjected to arbitrary mechanical and electrical loads. The transient re-
sponses of piezoelectric hollow cylinders subjected to a suddenly constant pressure on the internal surface
and a suddenly constant electric potential on the external surface are completed.

2. Basic formulations

In cylindrical coordinates (r, 6,z), for the axisymmetric problem, the components of displacement and
electric potential satisfy up = 0, u, = u,(r,z,¢), u, = u.(r,z,t) and ® = d(r,z, 1), respectively. If it is further a
plane strain problem, we get ug = u, = 0, u, = u,(r,t) and @ = ®(r,t). In this case, the strain-displacement
relations are simplified

Ou, u,
’V;‘r:ga V99:77 (1)

where y;; are the strain components. The constitutive relations of orthotropic, radially polarized piezo-
electric media are
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where ¢;;, e;; and ¢; are elastic constants, piezoelectric constants and dielectric constants, respectively. o;;
and D, are the components of stress and radial electric displacement, respectively. The equation of motion
is
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where p is the mass density. In order to show the results, the following non-dimensional forms are intro-
duced,

o = C11 ) = ‘12 _C13 _ 03 o — €3l o — €32
11— 2 — 7 33— 4 — 7 1 — ) 2 — )
C33 C33 C33 33 V/€33€33 V€33€33
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€3 = ) (7,-:—(127‘7072), ¢ b7 D: ) u:E7 (4)
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where a and b are the inner and outer radii of hollow cylinder, respectively. Then Eqgs. (1)—(3) can be re-
written as follows:

ou u
= Az =% 3
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ds, o,—o0ay O

2 + T o2 (7)
In absence of free charge density, the charge equation of electrostatics is
10
Z (D) =
The boundary conditions are
GV(S7T) :pa(r)a O'r(l,‘C) :pb(r)7 (93)
¢(Sv T) = d)a(f)? qS(l, T) = ¢b(T), (9b)

where p,(t) and p,(t) are known nondimensional pressures subjected to the internal and external surfaces
of the hollow cylinder, respectively. And ¢,(t) and ¢,(7) are known nondimensional electric potentials
subjected to the internal and external surfaces of the hollow cylinder, respectively.

The initial conditions are expressed as

1=0:u(0) =uy(E), u(&0)=r0(8), (10)

where a dot over a quantity denotes its partial derivative with respect to time.

3. Solving technology

At first, we rewrite the fourth equation in Eq. (6) as

0¢ u Ou
— =€~ — —D. 11
AR RNCTY: (11)
Then substituting Eq. (11) into the first three equations in Eq. (6), gives
0 ) 0
agzc?%—l—c?a—Z—elD, GZZCI;%+C4DG_Z_62D’ J,:c?%—kcé)a—g—qD, (12)
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where
cf =c —|—ef7 ) =cy+eje, c? =c3tee, =citee, =1 —|—e§. (13)
From Eq. (8), we get
1

D(¢;7) :Ed(TL (14)

where d(t) is an unknown function with respect to nondimensional time 7. Substituting the first and the
third equations in Eq. (12) into Eq. (7), and utilizing Eq. (14), derives

u 10u 1P 1 u e 1

e tEa @ ~gom @l )

D
,u:\/;;, cp=1/ch. (16)

Utilizing the third equation in Eq. (12) and Eq. (14), we can rewrite Eq. (9a) as

ou u ou u
525:&%2:@@, 5:1:8—5+h2:p2(r)7 (17)
where
D 1 1
=% A= p@+ 740 0 = 5l +esd() (18)

Next, a new variable w; (£, 7) is introduced to rewrite the inhomogeneous boundary conditions (17) which
are expressed by radial displacement u(¢&, 1) by assuming

u(é ) =wi (& 1) + wy(é 1), (19)
where w, (&, 1) satisfies the inhomogeneous boundary conditions (17) and can be taken as

w2(&, 1) = Ao(& = 5)"p2(1) + Bo(E = 1)"pi (1), (20)
in which

o= s)’"11+ W=y P T o —lkh(s 1) @)
here m is an arbitrary integer, which is no less than 2, and should satisfy

[m(1 —s)" " +h(1 —s)")m(s — )"+ h(s — 1)"/s] # 0. (22)
Substituting Eq. (18) into Eq. (20), w,(¢, 1) can be rewritten as

w2(&,7) = f1(Opa(t) + /2(E)ps(1) + f3(S) d (1), (23)
where

A =BE10" AO =S5 A =a|{(E+4E)]. (4

0
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Substituting Eq. (19) into Egs. (15), (17) and (10), yields

wi(é,1) 1w (&, 2 1 &wi(¢,
e T TCE R LA S ER) 29
owi (&) wi(&r) B
oe Th—e =0 (E=s,1), (26)
wi(&,0) =up(&) —w2(E,0),  wi(E,0) = vo(&) —a(&,0), (27)
where
. L Ow(E ) 2 1 owy(E,1)  Pwy(Er) e 1
g(gﬂ)—gT‘*‘?Wz(fﬂ)—z Y- R = (1) (28)
Substituting Eq. (23) into Eq. (28), derives
2(&7) = a1(&7) + £()d(x) + &(9)d(x), (29)
where
1
81(&,7) = fa()pa(x) + /5()ps(0) + 5 [/1()Pa(7) + £2()Bo ()],
L
_© LA A e 1 _ £
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R =
Using the separation of variables method, the solution of Eq. (25) can be assumed as
w1 =D R(OF(), (31)

where Fj(1) is an undetermined function and R;(¢) is given as follows
Rz(é) = Ju(kli)Y(:uv k[,S) - Yu(kié)‘](:uvkias)a (32)

where J,(k;¢) and Y, (k;€) are Bessel functions of the first and second kinds of order p. And k;, arranged in
an ascending order, are a series of positive roots of the following eigenequation

J(,Lt, ki7S)Y(:u'7 ki; 1) 7'](“7 kl'; l)Y(/’t7kl'7S) = 07 (33)
where
kD k) o ANE) | Tk

It can be shown that w; (&, 1) given in Eq. (31) satisfies the homogeneous boundary conditions in Eq. (26).
Substituting Eq. (31) into Eq. (25) gives

—c; Zkl‘zF;'(T)Ri(é) = ZRi(f) d (ﬁgr) +cig(é ). (35)
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By virtue of the orthogonal properties of Bessel functions, it is easy to verify that R;(¢) has the following
properties

/ ER(EDR,()dE = N, (36)
where J;; is the Kronecker delta, and
1 [[dr(D)7? dRi(s)71?
N, = W{ RO - e[ B ) - 2R0)] - R0 - 1) } (37)

in which dR;(s)/d¢ = dR;(&)/d¢|._, and dR;(1)/d¢ = dR;(&)/d¢|._,. Utilizing Eq. (36), we can derive the
following equation from Eq. (35)

dzi-gr) + 0}F(1) = ¢:(v), N

where

qi(t) = qui(t) + hy;d(7) + hyd(7),

w; = kicy, 6]11('5) = —Ci fgl(é,T)Ri(é) dé/]vh

I (39)
hy; = —Ci fgz(i)R;(é) df/Nh

s

1

hy = —c; | Eg(E)R(E)AE/N,.

s

The solution of Eq. (38) is

Hy; sin ;T eri / qi(p) sinw;(t — p)dp. (40a)
i Jo

i

F(t) = Hy;cos w;T +

We also can derive the following equation from Eq. (40a)
E(r) = —w;H}; sin w;t + Hy; cos w1 + / q:(p) cos w;(t — p)dp, (40b)
0

where H|; and H,; are unknown constants. Using Eq. (23), the initial conditions in Eq. (27) can be rewritten
as

wi(&0) = (&) = /(&) d(0), Wi(&,0) = vi (&) = £4(£)d(0), (41)
where

(&) = uo(&) = /1(8)pa(0) = £2()p(0),  v1(S) = v0(E) = £1(£)pa(0) — /2(E)ps(0)- (42)
Utilizing Eq. (31), Egs. (41) and (36), gives

Hy =1 + 1;d(0), Hy = I+ 1,d(0), (43)
where

1
o [awor@e n=-3 [ eor@e n= [ @oree (#4)
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Noticing that d (7) is involved in ¢;(7) in Egs. (40a) and (40b), we use the integration-by-parts formula and
obtain

/ d(p) sin w;(t — p)dp = —d(0) sin w;t — d(0)w; cos w;T + w;d(t) — a)f/ d(p) sin w;(t — p)dp.
0 0

(45)
Substituting the first equation in Eq. (39) into Eq. (40a) and utilizing Eq. (45), gives
hy; ! .
F(t) = Fit) + had () + (wl = g ) [ awysino - pdp (46)
i 0

where

Hj . 1 t . hi . .
Fi;(t) = Hyjcosw;t + 2 s1nw,-r+a/o q1i(p) s1nw,-(r—p)dp—i[a’(O)smw,ﬂ:—i—d(O)wicosa),-r].

(47)

In the following, we will determine d(z) by means of the electric boundary conditions in Eq. (9b). Sub-
stituting Eq. (14) into Eq. (11), gives

% es e gg—%d(r). (48)
Then substituting Egs. (23) and (31) into Eq. (19), reads
ZR )+ [1(Opa(x) + /(E)ps(7) + f3(E)d (7). (49)
Integrating Eq. (48) and utilizing Eq. (49), derives
$(&,7) = 1(E)pa(t) + 2()ps(7) + d3(8)d(7) + Z hai(E 4(2), (50)
where

f1(¢)

8E+ ali@) - Al ¢ =er /”@dﬂeswamsn,

o[ %
/36

at+aln@ -0l - (2). @ =a [ s ar - ko)

¢ ¢
(51)
If & = 1, Eq. (50) read as
by(1) = 1(1)pa(7) + P2 (1)ps(7) + P3(1)d(7) + Z dui(1 D4(7). (52)
Then we have
by (7) = 1 (Dpa(7) + D2 (Dpn(x) + b3 (1)d(7) + Z bu(1 ¢, (7). (53)

If T = 0, we can determine d(0) and d(O) without any difficulty from Egs. (52) and (53) by using Eq. (40)
and (43).
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¢b(0> - d)a(o) Q’) (1)]741( ) — (1)pb(0) - Zi 4)41'(1)]11'
O X0 |

a(0) = $5(0) — ¢4(0) — ¢ (1)pa(0) — ¢(1)ps(0) — 3 bus (1)1

$3(1) + 22, bu(1) L .

Substituting (0) and d(0) into Eq. (43) and Eq. (47), then H,; and H,; become known constants and F;(t)
become known functions. Substituting Eq. (46) into Eq. (52), derives

d(0) =
(54)

e )+ 3 [ dwysino (- pep (55)
where
§(®) = B4(0) — $u(6) — $1(Dpule) — ha(Dps(5) — 3 bl DFi(2)
’ (56)
D+ 3 gl B = bul) (2= o).

It is noted that Eq. (55) is the Volterra integral equation of the second kind (Kress, 1989). We also know
that the Eq. (55) has unique solution at all times. For some cases, the analytical solution can be obtained.
While for general cases, numerical methods are needed. In this paper, we construct the recursion formula by
making use of linear interpolation function. In practically, the numerical result can be obtained efficiently
by the present method. In order to show the method of solving the integral equation, we first divide the time

interval [0, 7,] into n subintervals. The discrete time points are 1o = 0,1y, 72, ..., 7,. Then the interpolation
function at the time interval [t;_;,7,] is
d(t) = {(0)d(vjm1) +ny(0)d(r;) (G=1,2,...,n), (57)
where
T—7T T—Tj-1
(1) = —2 ) = =1,2,... . 58
GO= s m@ = =12 (58)

Substituting Eq. (57) into Eq. (55), gives

¥(t;) = Evd(z;) +ZE212 Lijed(te1) + Miped ()], (59)

where

Lije = ff, , &(p) sinw;(t; — p) dp,

k:172..,~7 -:1727..-,7[. 60
My = ffk—lnk(p)smwi(fj_p)dp’ ( S J ) (60)

Then we can derive the following formula from Eq. (59).

Y1) = 3 Ex S L d(tit) + Myged (vi)] — d(t;1) 32, EaiLys
E+ ), ExMy;

In Eq. (54), we have obtained d(0). So we can obtain d(t;) (j =1,2,...,n) step by step. And d(z) is then
determined. Also u(&, 1) and ¢(&, 1) can be finally determined.

d(t)) = . (j=1,2,...,n). (61)
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4. Numerical results and discussions

The transient responses of PZT-4 piezoelectric hollow cylinder subjected to a suddenly constant pressure
and a sine time history pressure on the internal surface, as well as a suddenly constant electric potential and
a electric potential varied with a sine time on the external surface are to be considered. The material
constants (Dunn and Taya, 1994) are ¢y = ¢ = 139.0 GPa, ¢;» = 77.8 GPa, c¢;3 =cp3 = 74.3 GPa,
c13 = 115.0 GPa, e3 =e3 = —5.2 (C/m?), e3; = 15.1 (C/m?), e33 = 5.62 x 10™° (C?*/Nm?). In order to
compare with those in the non-piezoelectric hollow cylinder, we take the elastic constants of the non-
piezoelectric media same as those of PZT-4 media. In the calculation that follows, we take s = 0.5, m = 2,
T, = Ta00 = 10 and the first 30 terms in Eq. (31).

Example 1. The transient responses in the hollow cylinder subjected to a suddenly constant pressure on the
internal surface are to be considered. The boundary conditions are

pu(1) = —aoH (1), pp(t) =0.0, ¢,(1)=0.0, ¢,(r)=0.0, (62)

where oy is a prescribed constant stress and we take oy = 1.0 for computation. H(t) means the Heaviside
function.

Fig. 1 shows the responses of ¢, at ¢ = 0.75 (the middle surface) in the PZT-4 and non-piezoelectric
hollow cylinder due to an internal mechanical load shock. From the curves, we can see that the peak values
of radial dynamic stresses in the PZT-4 hollow cylinder are larger than those in the non-piezoelectric one.
And the response curves of the PZT-4 and the non-piezoelectric hollow cylinder are different with each
other.

Figs. 2 and 3 give the responses of gy at & = 0.5 (the internal surface) and & = 1.0 (the external surface) in
the PZT-4 and the non-piezoelectric hollow cylinder. For PZT-4 hollow cylinder, we find that the maximum
values of dynamic hoop stresses appear at the internal surface and it is tensile stress. The first peak value
appears at the time t = 2.40 and it is 4.28 times of the amplitude of the step input. While for non-piezo-
electric hollow cylinder, we also find that the maximum values of dynamic hoop stresses appear at the
internal surface and it is tensile stress. The first peak value appears at the time © = 2.45, later than that

1.00
—— piezoelectric
----- non-piezoelectric
0.50 —|
I
. i
~ H :
0" 00 " |
%) ! I
%) [} I
g ! 1
- , 1
17} | !
= : g
o —
g 050 i
Iw,,\ \lg :'M"
v
-1.00 —|
-1.50 T T T T T
0.00 1.00 2.00 3.00

Nondimensional time 7

Fig. 1. History of dynamic stress o, at ¢ = 0.75.
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5.00

—— piezoelectric

Hoop stress O, 0

0.00 2.00 4.00 6.00 8.00 10.00
Nondimensional time 7

Fig. 2. History of dynamic stress oy at £ = 0.5.

2.00

—— piezoelectric

----- non-piezoelectric

Hoop stress 0,

T i T i T i T i
0.00 2.00 4.00 6.00 8.00 10.00

Nondimensional time 7

Fig. 3. History of dynamic stress oy at & = 1.0.

appears in PZT-4 hollow cylinder, and the peak value is 3.93 times of the amplitude of the step input, less
than that appears in PZT-4 hollow cylinder. We also notice that the responses of g, in the PZT-4 are similar
to that in the non-piezoelectric one.

Figs. 4 and 5 illustrate the responses of D at the different positions (£ = 0.5, 0.75 and 1.0) and the
distributions of ¢ at the different times (z = 0.1, 0.2 and 0.5) in the PZT-4 hollow cylinder subjected to a
suddenly constant pressure on the internal surface. From Fig. 5 we find that the electric potentials at the
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1.00

electric placement D

-4.00 T T T T T T T T T
0.00 2.00 4.00 6.00 8.00 10.00

Nondimensional time 7

Fig. 4. Histories of dynamic electric displacement D at different locations.
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'0'06 T { T { T { T { T
0.50 0.60 0.70 0.80 0.90 1.00

Nondimensional coordinate &

Fig. 5. Distributions of dynamic electric potential ¢ at different times.

internal and external surfaces keep zero. Thus the results satisfy the prescribed electric boundary condi-
tions. So the correction of the numerical results is clarified.

Example 2. The transient responses in the hollow cylinder subjected to a sine time history pressure on the
internal surface are to be considered. The boundary conditions are

pa(f) = —0o Sin(wO‘L-)v pb(f) = 0.0, (l)a(f) =0.0, ¢,(r)=0.0, (63)
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4.00
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Fig. 6. History of dynamic stress o, at £ = 0.75.

where @, is the excitation frequency of the mechanical loads and we take w, = 5.0 and ¢y = 1.0 for
computation.

Fig. 6 shows the responses of o, at £ = 0.75 (the middle surface) in the PZT-4 and non-piezoelectric
hollow cylinder due to a sine time history pressure mechanical load on the internal surface. From the
curves, we can see that the radial dynamic stress curves in the PZT-4 hollow cylinder are similar to those in

the non-piezoelectric one. While the peak values of the curves of the PZT-4 hollow cylinder are less than
those of the non-piezoelectric one.

2.00
piezoelectric
1 === non-piezoelectric
1.00 —
B J
S)
w2
%
5 000 —|
w2
o
=]
s} J
T
-1.00 —|
-2.00
\ \ \ \
0.00 2.00 4.00 6.00 8.00 10.00

Nondimensional time 7

Fig. 7. History of dynamic stress oy at & = 0.5.
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4 piezoelectric

_______ non-piezoelectric

Hoop stress 0,

-1.00 .

T T T T T T T T
0.00 2.00 4.00 6.00 8.00 10.00

Nondimensional time 7

Fig. 8. History of dynamic stress oy at & = 1.0.

Figs. 7 and 8 give the responses of a4 at & = 0.5 (the internal surface) and ¢ = 1.0 (the external surface) in
the PZT-4 and the non-piezoelectric hollow cylinder. From the curves, we find that the peak values of the
dynamic hoop stresses in the PZT-4 hollow cylinder at ¢ = 0.5 and 1.0 are lager than those in the non-
piezoelectric one. We also notice that the responses of gy in the PZT-4 are similar to those in the non-
piezoelectric one.

2.00

1.00 —

electric placement D

-1.00 —

-2.00 T I T I T I T I T
0.00 2.00 4.00 6.00 8.00 10.00
Nondimensional time 7

Fig. 9. Histories of dynamic electric displacement D at different locations.
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0.01

-0.01 —|

electric potential ¢

-0.02 —

-0.03 I

0.50 0.60 0.70 0.80 0.90 1.00

Nondimensional coordinate &

Fig. 10. Distributions of dynamic electric potential ¢ at different times.

Figs. 9 and 10 illustrate the responses of D at the different positions (¢ = 0.5, 0.75 and 1.0) and the
distributions of ¢ at the different times (t = 0.1, 0.2 and 0.5) in the PZT-4 hollow cylinder. From Fig. 10, we
find that the calculated electric potential at the internal and external surfaces satisfies the prescribed electric
boundary conditions. So the correction of the numerical results is clarified in this respect.

Example 3. The transient responses of PZT-4 piezoelectric hollow cylinder subjected to a suddenly constant
electric potential on the external surface are to be considered. The boundary conditions are
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Fig. 11. History of dynamic stress o, at £ = 0.75.
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Fig. 12. Histories of dynamic stress gy at different locations.

Pa(t) = 0.0, pp(7) =0.0, ¢, (t) =00, ¢,(7) = ¢H (1), (64)

where ¢, is a prescribed constant electric potential and we take ¢, = 1.0 for computation.

Figs. 11 and 12 show the responses of ¢, and gy in the PZT-4 hollow cylinder due to an external electric
potential shock. By the computation, we find that the maximum values of ¢, appear at the inner part of the
hollow cylinder but not at the internal or external surfaces. While the maximum values of g, appear at
& = 0.5 (the internal surface). Figs. 13 and 14 give the responses of D at the different positions (¢ = 0.5, 0.75
and 1.0) and the distributions of ¢ at the different times (r = 0.1, 0.2 and 0.5) in the PZT-4 hollow cylinder.
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Fig. 13. Histories of dynamic electric displacement D at different locations.
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Fig. 14. Distributions of dynamic electric potential ¢ at different times.

From the curves, we notice that the maximum absolute value of D appears at the internal surface. The
calculated electric potential also satisfies the prescribed electric boundary conditions.

Example 4. The transient responses of PZT-4 piezoelectric hollow cylinder subjected to a sine time history
electric potential on the external surface are to be considered. The boundary conditions are

pa(‘c) = OO) Pb(f) = 007
b.(r) = 0.0,

$y(t) = P sin(wo),

and we take ¢, = 1.0 and wy = 5.0 for computation.

(65)
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Fig. 15. History of dynamic stress o, at £ = 0.75.
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Fig. 16. Histories of dynamic stress g, at different locations.

Figs. 15 and 16 depict the responses of ¢, and gy in the PZT-4 hollow cylinder due to a sine time history
electric potential on the external surface. By the computation, we find that the maximum values of ¢, and gy
appear at the inner part of the hollow cylinder but not at the internal or external surfaces. Figs. 17 and 18
give the responses of D at the different positions (£ = 0.5, 0.75 and 1.0) and the distributions of ¢ at the
different times (z = 0.1, 0.2 and 0.5) in the PZT-4 hollow cylinder. From Fig. 17, we notice that the
maximum absolute value of D appears at the internal surface.
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Fig. 17. Histories of dynamic electric displacement D at different locations.
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Fig. 18. Distributions of dynamic electric potential ¢ at different times.

5. Commentary

(1) If the electric boundary conditions in Eq. (9b) are expressed by electric displacements, we know only
one boundary condition is needed. That is, if the electric displacement is prescribed on one surface, then
the distributions of the electric displacement can be determined immediately by using Eq. (14). For this
case, from the beginning to Eq. (47), the displacement solution has been obtained and the procedure of
solving the integral equation is avoided. And the electric potential can be written as Eq. (50). But if we
want to determine ¢ (¢, 7) completely, one boundary condition about ¢ must be known. That is, either
¢, (1) or ¢,(t) should be prescribed. The relationship between ¢,(t) and ¢,() is given in Eq. (52).

(2) If {;(r) and #,(7) are polynomials of 7, then the integration in Eq. (60) can be expressed explicitly. So
the computing accuracy can be improved. By using linear interpolation functions or high order inter-
polation functions, the well-results can be obtained efficiently. It is noted here that the recursion for-
mula becomes very simply when linear interpolation functions are used. Particularly, the simplest
recursion formula will be obtained when equal time step are used. Based on many kinds of test, we con-
clude that the satisfying numerical results can be obtained when At < 0.05.
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