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Abstract

By virtue of the separation of variables technique, the axisymmetric plane strain electroelastic dynamic problem of

hollow cylinder is transferred to an integral equation about a function with respect to time, which can be solved

successfully by means of the interpolation method. Then the solution of the displacements, stresses, electric displace-

ments and electric potentials are finally obtained. The present method is suitable for the hollow cylinder with arbitrary

thickness subjected to arbitrary mechanical and electrical loads. Numerical results are also presented.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analyses for dynamic problems of elastic bodies are important and interesting research fields for

engineers and scientists. Being the common structural form, the hollow cylinders (cylindrical shells) are
studied extensively. For non-piezoelectric media, based on the momentless thin shell theory, Mcivor (1966)

discussed the flexural stresses and membrane stresses in an elastic cylindrical shell under an arbitrary im-

pulsive pressure distribution. Using the method of characteristics, the dynamic responses of cylindrical and

spherical shells were studied by Chou and Koenig (1966) and Rose et al. (1973). By means of the finite

Hankel transform and Laplace transform, Cinelli (1966) obtained the theoretical solutions of cylindrical

and spherical shells. Wang and Gong (1991) studied the stress responses of isotropic cylindrical shells

shocked at the inner surface. While for piezoelectric media, Adelman and Stavsky (1975) studied the ax-

isymmetric free vibrations of radially polarized piezoelectric ceramic hollow cylinders. The torsional wave
motion of a finite inhomogeneous piezoelectric cylindrical shell was solved by Sarma (1980), in which the
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material constants are assumed to vary as the 2N th power of r and the boundary conditions were time
dependent, axisymmetric electric potentials. It�s noted that the solution is only fit for class 622 crystals but
not fit for class 6 mm crystals. Shul�ga et al. (1984) investigated the axisymmetric electroelastic waves in a
hollow piezoelectric ceramic cylinder. The free vibrations of piezoelectric, empty and also compressible
fluid filled cylindrical shells for three-dimensional problems were studied by Ding et al. (1997a,b). Com-

paring with non-piezoelectric media, it is more difficult to obtain the dynamic analytical solution because of

the special coupling effect between mechanical deformation and electrical field. At present, the most works

are located to study the fields of free vibrations and wave propagations. While the transient responses,

although they are very important, have not been studied to the author�s knowledge.
In this paper, a method is developed for solving the transient response of axisymmetric plane strain

problem of piezoelectric hollow cylinders subjected to dynamic loads. Firstly, a special function is intro-

duced to transform the inhomogeneous mechanical boundary conditions into the homogeneous ones.
Secondly, by virtue of the orthogonal expansion technique and by using the initial conditions as well as

electrical boundary conditions, the integral equation about a function with respect to time is then derived,

which is possible to be solved by means of interpolation method. And finally, the displacement, stresses,

electric displacement and electric potential are obtained. The present method is suitable for the hollow

cylinder with arbitrary thickness subjected to arbitrary mechanical and electrical loads. The transient re-

sponses of piezoelectric hollow cylinders subjected to a suddenly constant pressure on the internal surface

and a suddenly constant electric potential on the external surface are completed.

2. Basic formulations

In cylindrical coordinates ðr; h; zÞ, for the axisymmetric problem, the components of displacement and
electric potential satisfy uh ¼ 0, ur ¼ urðr; z; tÞ, uz ¼ uzðr; z; tÞ and U ¼ Uðr; z; tÞ, respectively. If it is further a
plane strain problem, we get uh ¼ uz ¼ 0, ur ¼ urðr; tÞ and U ¼ Uðr; tÞ. In this case, the strain-displacement
relations are simplified

crr ¼
our

or
; chh ¼

ur

r
; ð1Þ

where cij are the strain components. The constitutive relations of orthotropic, radially polarized piezo-

electric media are

rhh ¼ c11chh þ c13crr þ e31
oU
or

;

rzz ¼ c12chh þ c23crr þ e32
oU
or

;

rrr ¼ c13chh þ c33crr þ e33
oU
or

;

Dr ¼ e31chh þ e33crr � e33
oU
or

;

ð2Þ

where cij, eij and eij are elastic constants, piezoelectric constants and dielectric constants, respectively. rij

and Dr are the components of stress and radial electric displacement, respectively. The equation of motion
is

orrr

or
þ rrr � rhh

r
¼ q

o2ur

ot2
; ð3Þ
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where q is the mass density. In order to show the results, the following non-dimensional forms are intro-

duced,

c1 ¼
c11
c33

; c2 ¼
c12
c33

; c3 ¼
c13
c33

; c4 ¼
c23
c33

; e1 ¼
e31ffiffiffiffiffiffiffiffiffiffiffi
c33e33

p ; e2 ¼
e32ffiffiffiffiffiffiffiffiffiffiffi
c33e33

p ;

e3 ¼
e33ffiffiffiffiffiffiffiffiffiffiffi
c33e33

p ; ri ¼
rii

c33
ði ¼ r; h; zÞ; / ¼

ffiffiffiffiffiffi
e33
c33

r
U
b
; D ¼ Drffiffiffiffiffiffiffiffiffiffiffi

c33e33
p ; u ¼ ur

b
;

n ¼ r
b
; s ¼ a

b
; cv ¼

ffiffiffiffiffiffi
c33
q

r
; s ¼ cv

b
t;

ð4Þ

where a and b are the inner and outer radii of hollow cylinder, respectively. Then Eqs. (1)–(3) can be re-

written as follows:

crr ¼
ou
on

; chh ¼
u
n
; ð5Þ

rh ¼ c1
u
n
þ c3

ou
on

þ e1
o/
on

; rz ¼ c2
u
n
þ c4

ou
on

þ e2
o/
on

;

rr ¼ c3
u
n
þ ou
on

þ e3
o/
on

; D ¼ e1
u
n
þ e3

ou
on

� o/
on

;

ð6Þ

orr

on
þ rr � rh

n
¼ o2u

os2
: ð7Þ

In absence of free charge density, the charge equation of electrostatics is

1

n
o

on
ðnDÞ ¼ 0: ð8Þ

The boundary conditions are

rrðs; sÞ ¼ paðsÞ; rrð1; sÞ ¼ pbðsÞ; ð9aÞ

/ðs; sÞ ¼ /aðsÞ; /ð1; sÞ ¼ /bðsÞ; ð9bÞ
where paðsÞ and pbðsÞ are known nondimensional pressures subjected to the internal and external surfaces
of the hollow cylinder, respectively. And /aðsÞ and /bðsÞ are known nondimensional electric potentials
subjected to the internal and external surfaces of the hollow cylinder, respectively.

The initial conditions are expressed as

s ¼ 0 : uðn; 0Þ ¼ u0ðnÞ; _uuðn; 0Þ ¼ v0ðnÞ; ð10Þ
where a dot over a quantity denotes its partial derivative with respect to time.

3. Solving technology

At first, we rewrite the fourth equation in Eq. (6) as

o/
on

¼ e1
u
n
þ e3

ou
on

� D: ð11Þ

Then substituting Eq. (11) into the first three equations in Eq. (6), gives

rh ¼ cD
1

u
n
þ cD

3

ou
on

� e1D; rz ¼ cD
2

u
n
þ cD

4

ou
on

� e2D; rr ¼ cD
3

u
n
þ cD

0

ou
on

� e3D; ð12Þ
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where

cD
1 ¼ c1 þ e21; cD

2 ¼ c2 þ e1e2; cD
3 ¼ c3 þ e1e3; cD

4 ¼ c4 þ e2e3; cD
0 ¼ 1þ e23: ð13Þ

From Eq. (8), we get

Dðn; sÞ ¼ 1

n
dðsÞ; ð14Þ

where dðsÞ is an unknown function with respect to nondimensional time s. Substituting the first and the
third equations in Eq. (12) into Eq. (7), and utilizing Eq. (14), derives

o2u

on2
þ 1

n
ou
on

� l2

n2
u ¼ 1

c2L

o2u
os2

� e1
cD
0

1

n2
dðsÞ; ð15Þ

where

l ¼

ffiffiffiffiffi
cD
1

cD
0

s
; cL ¼

ffiffiffiffiffi
cD
0

q
: ð16Þ

Utilizing the third equation in Eq. (12) and Eq. (14), we can rewrite Eq. (9a) as

n ¼ s :
ou
on

þ h
u
n
¼ p1ðsÞ; n ¼ 1 :

ou
on

þ h
u
n
¼ p2ðsÞ; ð17Þ

where

h ¼ cD
3

cD
0

; p1ðsÞ ¼
1

cD
0

paðsÞ
h

þ e3
s

dðsÞ
i
; p2ðsÞ ¼

1

cD
0

½pbðsÞ þ e3 dðsÞ�: ð18Þ

Next, a new variable w1ðn; sÞ is introduced to rewrite the inhomogeneous boundary conditions (17) which
are expressed by radial displacement uðn; sÞ by assuming

uðn; sÞ ¼ w1ðn; sÞ þ w2ðn; sÞ; ð19Þ

where w2ðn; sÞ satisfies the inhomogeneous boundary conditions (17) and can be taken as
w2ðn; sÞ ¼ A0ðn � sÞmp2ðsÞ þ B0ðn � 1Þmp1ðsÞ; ð20Þ

in which

A0 ¼
1

mð1� sÞm�1 þ hð1� sÞm
; B0 ¼

1

mðs � 1Þm�1 þ hðs � 1Þm=s
; ð21Þ

here m is an arbitrary integer, which is no less than 2, and should satisfy

½mð1� sÞm�1 þ hð1� sÞm�½mðs � 1Þm�1 þ hðs � 1Þm=s� 6¼ 0: ð22Þ
Substituting Eq. (18) into Eq. (20), w2ðn; sÞ can be rewritten as

w2ðn; sÞ ¼ f1ðnÞpaðsÞ þ f2ðnÞpbðsÞ þ f3ðnÞdðsÞ; ð23Þ
where

f1ðnÞ ¼
B0
cD
0

ðn � 1Þm; f2ðnÞ ¼
A0
cD
0

ðn � sÞm; f3ðnÞ ¼ e3
1

s
f1ðnÞ

�
þ f2ðnÞ

�
: ð24Þ
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Substituting Eq. (19) into Eqs. (15), (17) and (10), yields

o2w1ðn; sÞ
on2

þ 1

n
ow1ðn; sÞ

on
� l2

n2
w1ðn; sÞ ¼

1

c2L

o2w1ðn; sÞ
os2

þ gðn; sÞ; ð25Þ

ow1ðn; sÞ
on

þ h
w1ðn; sÞ

n
¼ 0; ðn ¼ s; 1Þ; ð26Þ

w1ðn; 0Þ ¼ u0ðnÞ � w2ðn; 0Þ; _ww1ðn; 0Þ ¼ v0ðnÞ � _ww2ðn; 0Þ; ð27Þ

where

gðn; sÞ ¼ 1

c2L

o2w2ðn; sÞ
os2

þ l2

n2
w2ðn; sÞ �

1

n
ow2ðn; sÞ

on
� o2w2ðn; sÞ

on2
� e1

cD
0

1

n2
dðsÞ: ð28Þ

Substituting Eq. (23) into Eq. (28), derives

gðn; sÞ ¼ g1ðn; sÞ þ g2ðnÞdðsÞ þ g3ðnÞ€ddðsÞ; ð29Þ

where

g1ðn; sÞ ¼ f4ðnÞpaðsÞ þ f5ðnÞpbðsÞ þ
1

c2L
½f1ðnÞ€ppaðsÞ þ f2ðnÞ€ppbðsÞ�;

g2ðnÞ ¼
l2

n2
f3ðnÞ �

1

n
df3ðnÞ
dn

� d2f3ðnÞ
dn2

� e1
cD
0

1

n2
; g3ðnÞ ¼

f3ðnÞ
c2L

;

f4ðnÞ ¼
l2

n2
f1ðnÞ �

1

n
df1ðnÞ
dn

� d2f1ðnÞ
dn2

;

f5ðnÞ ¼
l2

n2
f2ðnÞ �

1

n
df2ðnÞ
dn

� d2f2ðnÞ
dn2

:

ð30Þ

Using the separation of variables method, the solution of Eq. (25) can be assumed as

w1ðn; sÞ ¼
X

i

RiðnÞFiðsÞ; ð31Þ

where FiðsÞ is an undetermined function and RiðnÞ is given as follows
RiðnÞ ¼ JlðkinÞY ðl; ki; sÞ � YlðkinÞJðl; ki; sÞ; ð32Þ

where JlðkinÞ and YlðkinÞ are Bessel functions of the first and second kinds of order l. And ki, arranged in

an ascending order, are a series of positive roots of the following eigenequation

Jðl; ki; sÞY ðl; ki; 1Þ � Jðl; ki; 1ÞY ðl; ki; sÞ ¼ 0; ð33Þ
where

Jðl; ki; nÞ ¼
dJlðkinÞ
dn

þ h
JlðkinÞ

n
; Y ðl; ki; nÞ ¼

dYlðkinÞ
dn

þ h
YlðkinÞ

n
: ð34Þ

It can be shown that w1ðn; sÞ given in Eq. (31) satisfies the homogeneous boundary conditions in Eq. (26).
Substituting Eq. (31) into Eq. (25) gives

�c2L
X

i

k2i FiðsÞRiðnÞ ¼
X

i

RiðnÞ
d2FiðsÞ
ds2

þ c2Lgðn; sÞ: ð35Þ
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By virtue of the orthogonal properties of Bessel functions, it is easy to verify that RiðnÞ has the following
propertiesZ 1

s
nRiðnÞRjðnÞdn ¼ Nidij; ð36Þ

where dij is the Kronecker delta, and

Ni ¼
1

2k2i

dRið1Þ
dn

� �2(
� s2

dRiðsÞ
dn

� �2
þ k2i R2i ð1Þ

�
� s2R2i ðsÞ



� l2 R2i ð1Þ

�
� R2i ðsÞ


)
; ð37Þ

in which dRiðsÞ=dn ¼ dRiðnÞ=dnjn¼s and dRið1Þ=dn ¼ dRiðnÞ=dnjn¼1. Utilizing Eq. (36), we can derive the
following equation from Eq. (35)

d2FiðsÞ
ds2

þ x2
i FiðsÞ ¼ qiðsÞ; ð38Þ

where

qiðsÞ ¼ q1iðsÞ þ h1i dðsÞ þ h2i €ddðsÞ;

xi ¼ kicL; q1iðsÞ ¼ �c2L

Z 1

s
ng1ðn; sÞRiðnÞdn=Ni;

h1i ¼ �c2L

Z 1

s
ng2ðnÞRiðnÞdn=Ni;

h2i ¼ �c2L

Z 1

s
ng3ðnÞRiðnÞdn=Ni:

ð39Þ

The solution of Eq. (38) is

FiðsÞ ¼ H1i cosxis þ
H2i

xi
sinxis þ

1

xi

Z s

0

qiðpÞ sinxiðs � pÞdp: ð40aÞ

We also can derive the following equation from Eq. (40a)

_FFiðsÞ ¼ �xiH1i sinxis þ H2i cosxis þ
Z s

0

qiðpÞ cosxiðs � pÞdp; ð40bÞ

where H1i and H2i are unknown constants. Using Eq. (23), the initial conditions in Eq. (27) can be rewritten

as

w1ðn; 0Þ ¼ u1ðnÞ � f3ðnÞdð0Þ; _ww1ðn; 0Þ ¼ v1ðnÞ � f3ðnÞ _ddð0Þ; ð41Þ
where

u1ðnÞ ¼ u0ðnÞ � f1ðnÞpað0Þ � f2ðnÞpbð0Þ; v1ðnÞ ¼ v0ðnÞ � f1ðnÞ _ppað0Þ � f2ðnÞ _ppbð0Þ: ð42Þ
Utilizing Eq. (31), Eqs. (41) and (36), gives

H1i ¼ I1i þ I2i dð0Þ; H2i ¼ I3i þ I2i _ddð0Þ; ð43Þ
where

I1i ¼
1

Ni

Z 1

s
nu1ðnÞRiðnÞdn; I2i ¼ � 1

Ni

Z 1

s
nf3ðnÞRiðnÞdn; I3i ¼

1

Ni

Z 1

s
nv1ðnÞRiðnÞdn: ð44Þ
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Noticing that €ddðsÞ is involved in qiðsÞ in Eqs. (40a) and (40b), we use the integration-by-parts formula and
obtainZ s

0

€ddðpÞ sinxiðs � pÞdp ¼ � _ddð0Þ sinxis � dð0Þxi cosxis þ xi dðsÞ � x2
i

Z s

0

dðpÞ sinxiðs � pÞdp:

ð45Þ

Substituting the first equation in Eq. (39) into Eq. (40a) and utilizing Eq. (45), gives

FiðsÞ ¼ F1iðsÞ þ h2i dðsÞ þ
h1i
xi

�
� h2ixi

�Z s

0

dðpÞ sinxiðs � pÞdp; ð46Þ

where

F1iðsÞ ¼ H1i cosxis þ
H2i

xi
sinxis þ

1

xi

Z s

0

q1iðpÞ sinxiðs � pÞdp � h2i
xi

½ _ddð0Þ sinxis þ dð0Þxi cosxis�:

ð47Þ

In the following, we will determine dðsÞ by means of the electric boundary conditions in Eq. (9b). Sub-
stituting Eq. (14) into Eq. (11), gives

o/
on

¼ e1
u
n
þ e3

ou
on

� 1

n
dðsÞ: ð48Þ

Then substituting Eqs. (23) and (31) into Eq. (19), reads

uðn; sÞ ¼
X

i

RiðnÞFiðsÞ þ f1ðnÞpaðsÞ þ f2ðnÞpbðsÞ þ f3ðnÞdðsÞ: ð49Þ

Integrating Eq. (48) and utilizing Eq. (49), derives

/ðn; sÞ ¼ /1ðnÞpaðsÞ þ /2ðnÞpbðsÞ þ /3ðnÞdðsÞ þ
X

i

/4iðnÞFiðsÞ þ /aðsÞ; ð50Þ

where

/1ðnÞ ¼ e1

Z n

s

f1ðnÞ
n

dn þ e3½f1ðnÞ � f1ðsÞ�; /2ðnÞ ¼ e1

Z n

s

f2ðnÞ
n

dn þ e3½f2ðnÞ � f2ðsÞ�;

/3ðnÞ ¼ e1

Z n

s

f3ðnÞ
n

dn þ e3½f3ðnÞ � f3ðsÞ� � ln
n
s

� �
; /4iðnÞ ¼ e1

Z n

s

RiðnÞ
n

dn þ e3½RiðnÞ � RiðsÞ�:

ð51Þ

If n ¼ 1, Eq. (50) read as

/bðsÞ ¼ /1ð1ÞpaðsÞ þ /2ð1ÞpbðsÞ þ /3ð1ÞdðsÞ þ
X

i

/4ið1ÞFiðsÞ þ /aðsÞ: ð52Þ

Then we have

_//bðsÞ ¼ /1ð1Þ _ppaðsÞ þ /2ð1Þ _ppbðsÞ þ /3ð1Þ _ddðsÞ þ
X

i

/4ið1Þ _FFiðsÞ þ _//aðsÞ: ð53Þ

If s ¼ 0, we can determine dð0Þ and _ddð0Þ without any difficulty from Eqs. (52) and (53) by using Eq. (40)
and (43).
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dð0Þ ¼ /bð0Þ � /að0Þ � /1ð1Þpað0Þ � /2ð1Þpbð0Þ �
P

i /4ið1ÞI1i
/3ð1Þ þ

P
i /4ið1ÞI2i

;

_ddð0Þ ¼
_//bð0Þ � _//að0Þ � /1ð1Þ _ppað0Þ � /2ð1Þ _ppbð0Þ �

P
i /4ið1ÞI3i

/3ð1Þ þ
P

i /4ið1ÞI2i
:

ð54Þ

Substituting dð0Þ and _ddð0Þ into Eq. (43) and Eq. (47), then H1i and H2i become known constants and F1iðsÞ
become known functions. Substituting Eq. (46) into Eq. (52), derives

wðsÞ ¼ E1 dðsÞ þ
X

i

E2i

Z s

0

dðpÞ sinxiðs � pÞdp; ð55Þ

where

wðsÞ ¼ /bðsÞ � /aðsÞ � /1ð1ÞpaðsÞ � /2ð1ÞpbðsÞ �
X

i

/4ið1ÞF1iðsÞ;

E1 ¼ /3ð1Þ þ
X

i

/4ið1Þh2i; E2i ¼ /4ið1Þ
h1i
xi

�
� h2ixi

�
:

ð56Þ

It is noted that Eq. (55) is the Volterra integral equation of the second kind (Kress, 1989). We also know

that the Eq. (55) has unique solution at all times. For some cases, the analytical solution can be obtained.

While for general cases, numerical methods are needed. In this paper, we construct the recursion formula by

making use of linear interpolation function. In practically, the numerical result can be obtained efficiently

by the present method. In order to show the method of solving the integral equation, we first divide the time

interval ½0; sn� into n subintervals. The discrete time points are s0 ¼ 0; s1; s2; . . . ; sn. Then the interpolation

function at the time interval ½sj�1; sj� is

dðsÞ ¼ fjðsÞdðsj�1Þ þ gjðsÞdðsjÞ ðj ¼ 1; 2; . . . ; nÞ; ð57Þ

where

fjðsÞ ¼
s � sj

sj�1 � sj
; gjðsÞ ¼

s � sj�1

sj � sj�1
ðj ¼ 1; 2; . . . ; nÞ: ð58Þ

Substituting Eq. (57) into Eq. (55), gives

wðsjÞ ¼ E1 dðsjÞ þ
X

i

E2i
Xj

k¼1
½Lijk dðsk�1Þ þ Mijk dðskÞ�; ð59Þ

where

Lijk ¼
R sk

sk�1
fkðpÞ sinxiðsj � pÞdp;

Mijk ¼
R sk

sk�1
gkðpÞ sinxiðsj � pÞdp; ðk ¼ 1; 2 � � � j; j ¼ 1; 2; . . . ; nÞ: ð60Þ

Then we can derive the following formula from Eq. (59).

dðsjÞ ¼
wðsjÞ �

P
i E2i

Pj�1
k¼1½Lijk dðsk�1Þ þ Mijk dðskÞ� � dðsj�1Þ

P
i E2iLijj

E1 þ
P

i E2iMijj
; ðj ¼ 1; 2; . . . ; nÞ: ð61Þ

In Eq. (54), we have obtained dð0Þ. So we can obtain dðsjÞ ðj ¼ 1; 2; . . . ; nÞ step by step. And dðsÞ is then
determined. Also uðn; sÞ and /ðn; sÞ can be finally determined.
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4. Numerical results and discussions

The transient responses of PZT-4 piezoelectric hollow cylinder subjected to a suddenly constant pressure

and a sine time history pressure on the internal surface, as well as a suddenly constant electric potential and
a electric potential varied with a sine time on the external surface are to be considered. The material

constants (Dunn and Taya, 1994) are c11 ¼ c22 ¼ 139:0 GPa, c12 ¼ 77:8 GPa, c13 ¼ c23 ¼ 74:3 GPa,

c33 ¼ 115:0 GPa, e31 ¼ e32 ¼ �5:2 (C/m2), e33 ¼ 15:1 (C/m2), e33 ¼ 5:62� 10�9 (C2/Nm2). In order to

compare with those in the non-piezoelectric hollow cylinder, we take the elastic constants of the non-

piezoelectric media same as those of PZT-4 media. In the calculation that follows, we take s ¼ 0:5, m ¼ 2,

sn ¼ s200 ¼ 10 and the first 30 terms in Eq. (31).

Example 1. The transient responses in the hollow cylinder subjected to a suddenly constant pressure on the
internal surface are to be considered. The boundary conditions are

paðsÞ ¼ �r0HðsÞ; pbðsÞ ¼ 0:0; /aðsÞ ¼ 0:0; /bðsÞ ¼ 0:0; ð62Þ

where r0 is a prescribed constant stress and we take r0 ¼ 1:0 for computation. HðsÞ means the Heaviside
function.

Fig. 1 shows the responses of rr at n ¼ 0:75 (the middle surface) in the PZT-4 and non-piezoelectric
hollow cylinder due to an internal mechanical load shock. From the curves, we can see that the peak values
of radial dynamic stresses in the PZT-4 hollow cylinder are larger than those in the non-piezoelectric one.

And the response curves of the PZT-4 and the non-piezoelectric hollow cylinder are different with each

other.

Figs. 2 and 3 give the responses of rh at n ¼ 0:5 (the internal surface) and n ¼ 1:0 (the external surface) in
the PZT-4 and the non-piezoelectric hollow cylinder. For PZT-4 hollow cylinder, we find that the maximum

values of dynamic hoop stresses appear at the internal surface and it is tensile stress. The first peak value

appears at the time s ¼ 2:40 and it is 4.28 times of the amplitude of the step input. While for non-piezo-
electric hollow cylinder, we also find that the maximum values of dynamic hoop stresses appear at the
internal surface and it is tensile stress. The first peak value appears at the time s ¼ 2:45, later than that

Fig. 1. History of dynamic stress rr at n ¼ 0:75.
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appears in PZT-4 hollow cylinder, and the peak value is 3.93 times of the amplitude of the step input, less

than that appears in PZT-4 hollow cylinder. We also notice that the responses of rh in the PZT-4 are similar

to that in the non-piezoelectric one.

Figs. 4 and 5 illustrate the responses of D at the different positions (n ¼ 0:5, 0.75 and 1.0) and the
distributions of / at the different times (s ¼ 0:1, 0.2 and 0.5) in the PZT-4 hollow cylinder subjected to a

suddenly constant pressure on the internal surface. From Fig. 5 we find that the electric potentials at the

Fig. 2. History of dynamic stress rh at n ¼ 0:5.

Fig. 3. History of dynamic stress rh at n ¼ 1:0.

114 H.J. Ding et al. / International Journal of Solids and Structures 40 (2003) 105–123



internal and external surfaces keep zero. Thus the results satisfy the prescribed electric boundary condi-

tions. So the correction of the numerical results is clarified.

Example 2. The transient responses in the hollow cylinder subjected to a sine time history pressure on the
internal surface are to be considered. The boundary conditions are

paðsÞ ¼ �r0 sinðx0sÞ; pbðsÞ ¼ 0:0; /aðsÞ ¼ 0:0; /bðsÞ ¼ 0:0; ð63Þ

Fig. 4. Histories of dynamic electric displacement D at different locations.

Fig. 5. Distributions of dynamic electric potential / at different times.
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where x0 is the excitation frequency of the mechanical loads and we take x0 ¼ 5:0 and r0 ¼ 1:0 for
computation.

Fig. 6 shows the responses of rr at n ¼ 0:75 (the middle surface) in the PZT-4 and non-piezoelectric
hollow cylinder due to a sine time history pressure mechanical load on the internal surface. From the

curves, we can see that the radial dynamic stress curves in the PZT-4 hollow cylinder are similar to those in

the non-piezoelectric one. While the peak values of the curves of the PZT-4 hollow cylinder are less than
those of the non-piezoelectric one.

Fig. 6. History of dynamic stress rr at n ¼ 0:75.

Fig. 7. History of dynamic stress rh at n ¼ 0:5.
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Figs. 7 and 8 give the responses of rh at n ¼ 0:5 (the internal surface) and n ¼ 1:0 (the external surface) in
the PZT-4 and the non-piezoelectric hollow cylinder. From the curves, we find that the peak values of the

dynamic hoop stresses in the PZT-4 hollow cylinder at n ¼ 0:5 and 1.0 are lager than those in the non-
piezoelectric one. We also notice that the responses of rh in the PZT-4 are similar to those in the non-

piezoelectric one.

Fig. 8. History of dynamic stress rh at n ¼ 1:0.

Fig. 9. Histories of dynamic electric displacement D at different locations.
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Figs. 9 and 10 illustrate the responses of D at the different positions (n ¼ 0:5, 0.75 and 1.0) and the
distributions of / at the different times (s ¼ 0:1, 0.2 and 0.5) in the PZT-4 hollow cylinder. From Fig. 10, we

find that the calculated electric potential at the internal and external surfaces satisfies the prescribed electric

boundary conditions. So the correction of the numerical results is clarified in this respect.

Example 3. The transient responses of PZT-4 piezoelectric hollow cylinder subjected to a suddenly constant
electric potential on the external surface are to be considered. The boundary conditions are

Fig. 10. Distributions of dynamic electric potential / at different times.

Fig. 11. History of dynamic stress rr at n ¼ 0:75.
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paðsÞ ¼ 0:0; pbðsÞ ¼ 0:0; /aðsÞ ¼ 0:0; /bðsÞ ¼ /0HðsÞ; ð64Þ

where /0 is a prescribed constant electric potential and we take /0 ¼ 1:0 for computation.
Figs. 11 and 12 show the responses of rr and rh in the PZT-4 hollow cylinder due to an external electric

potential shock. By the computation, we find that the maximum values of rr appear at the inner part of the
hollow cylinder but not at the internal or external surfaces. While the maximum values of rh appear at

n ¼ 0:5 (the internal surface). Figs. 13 and 14 give the responses of D at the different positions (n ¼ 0:5, 0.75
and 1.0) and the distributions of / at the different times (s ¼ 0:1, 0.2 and 0.5) in the PZT-4 hollow cylinder.

Fig. 12. Histories of dynamic stress rh at different locations.

Fig. 13. Histories of dynamic electric displacement D at different locations.
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From the curves, we notice that the maximum absolute value of D appears at the internal surface. The

calculated electric potential also satisfies the prescribed electric boundary conditions.

Example 4. The transient responses of PZT-4 piezoelectric hollow cylinder subjected to a sine time history

electric potential on the external surface are to be considered. The boundary conditions are

paðsÞ ¼ 0:0; pbðsÞ ¼ 0:0;

/aðsÞ ¼ 0:0; /bðsÞ ¼ /0 sinðx0sÞ;
ð65Þ

and we take /0 ¼ 1:0 and x0 ¼ 5:0 for computation.

Fig. 14. Distributions of dynamic electric potential / at different times.

Fig. 15. History of dynamic stress rr at n ¼ 0:75.
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Figs. 15 and 16 depict the responses of rr and rh in the PZT-4 hollow cylinder due to a sine time history

electric potential on the external surface. By the computation, we find that the maximum values of rr and rh

appear at the inner part of the hollow cylinder but not at the internal or external surfaces. Figs. 17 and 18

give the responses of D at the different positions (n ¼ 0:5, 0.75 and 1.0) and the distributions of / at the

different times (s ¼ 0:1, 0.2 and 0.5) in the PZT-4 hollow cylinder. From Fig. 17, we notice that the

maximum absolute value of D appears at the internal surface.

Fig. 16. Histories of dynamic stress rh at different locations.

Fig. 17. Histories of dynamic electric displacement D at different locations.
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5. Commentary

(1) If the electric boundary conditions in Eq. (9b) are expressed by electric displacements, we know only

one boundary condition is needed. That is, if the electric displacement is prescribed on one surface, then

the distributions of the electric displacement can be determined immediately by using Eq. (14). For this

case, from the beginning to Eq. (47), the displacement solution has been obtained and the procedure of

solving the integral equation is avoided. And the electric potential can be written as Eq. (50). But if we
want to determine /ðn; sÞ completely, one boundary condition about / must be known. That is, either

/aðsÞ or /bðsÞ should be prescribed. The relationship between /aðsÞ and /bðsÞ is given in Eq. (52).
(2) If fkðsÞ and gkðsÞ are polynomials of s, then the integration in Eq. (60) can be expressed explicitly. So

the computing accuracy can be improved. By using linear interpolation functions or high order inter-

polation functions, the well-results can be obtained efficiently. It is noted here that the recursion for-

mula becomes very simply when linear interpolation functions are used. Particularly, the simplest

recursion formula will be obtained when equal time step are used. Based on many kinds of test, we con-

clude that the satisfying numerical results can be obtained when Ds6 0:05.
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